Vibration Analysis of Circular Single-Layer Graphene Sheet Using Finite Element Method
Authors
Abstract:
Graphene sheets are combined of Honeycombs lattice carbon-carbon bonds which have high natural frequencies, high strength, and high conductivity. Due to important applications of the graphene sheets particularly at higher frequencies, the study of their dynamic behavior is important in this frequency range. From Molecular Dynamics (MD) point of view as the dimensions of graphene sheet incline, the number of atoms increases, and as a result, its modeling becomes more time-consuming. Besides the experimental methods in small dimensions are difficult to conduct and not economical. In this research Finite Element Method (FEM) is used for frequency analysis of graphene sheets in various dimensions in order to study the capability of FEM in simulating the dynamic behavior of graphene sheets at small scales. In this research, the objective function is to find the minimum size of the sheet in which both methods have good convergence. Also, the time-consuming for the simulation is investigated. The time-consuming for analysis in the Finite Element Method is less than other methods, including Molecular Dynamics (MD), Generalized Differential Quadrature (GDQ), etc. Also, The results indicated that for circular single-layer graphene sheets simulation, using Finite Element Method (FEM) is in good agreement with the results obtained from the Molecular Dynamics (MD) simulation, in the radius more than 100 nm. In this research, the ABAQUS has been used for Finite Element Method (FEM) simulation.
similar resources
effect of geometrical defect on free vibration of a circular graphene sheet using trefftz method
because of production process and constrains conditions, circular graphene sheet may be opposed to structural defect and pin hole, respectively. some of the defects and pin hole on a circular graphene sheet can be considered as an eccentric hole on the sheet. hence, analyzing behavior of circular graphene sheet with an eccentric hole is important. free vibration of an eccentric annular graphene...
full textFree Vibration Analysis of Moderately Thick Functionally Graded Plates with Multiple Circular and Square Cutouts Using Finite Element Method
A simple formulation for studying the free vibration of shear-deformable functionally graded plates of different shapes with different cutouts using the finite element method is presented. The aim is to fill the void in the available literature with respect to the free vibration results of functionally graded plates of different shapes with different cutouts. The material properties of the plat...
full textFree and Forced Transverse Vibration Analysis of Moderately Thick Orthotropic Plates Using Spectral Finite Element Method
In the present study, a spectral finite element method is developed for free and forced transverse vibration of Levy-type moderately thick rectangular orthotropic plates based on first-order shear deformation theory. Levy solution assumption was used to convert the two-dimensional problem into a one-dimensional problem. In the first step, the governing out-of-plane differential equations are tr...
full textbuckling of viscoelastic composite plates using the finite strip method
در سال های اخیر، تقاضای استفاده از تئوری خطی ویسکوالاستیسیته بیشتر شده است. با افزایش استفاده از کامپوزیت های پیشرفته در صنایع هوایی و همچنین استفاده روزافزون از مواد پلیمری، اهمیت روش های دقیق طراحی و تحلیل چنین ساختارهایی بیشتر شده است. این مواد جدید از خودشان رفتارهای مکانیکی ارائه می دهند که با تئوری های الاستیسیته و ویسکوزیته، نمی توان آن ها را توصیف کرد. این مواد، خواص ویسکوالاستیک دارند....
Nonlinear vibration and postbuckling analysis of a single layer graphene sheet embedded in a polymer matrix
Nonlinear vibration and postbuckling behavior of a single layer graphene sheet (SLGS) embedded in a polymer matrix aroused by the nonlinear van der Waals (vdW) forces are investigated using the Kirchhoff plate theory. The interfacial vdW forces are described by a nonlinear function in terms of the graphene deflection. Through harmonic balance method, the nonlinear relation between deflection am...
full textAnalysis of Axisymmetric and Non-Axisymmetric Stretching of Sheet Metals by the Finite Element Method
Stretching process of sheet metals in both cases of axisymmetric and non-axisymmetric is analyzed. A rigid-plastic, normal anisotrop material is assumed and large strain formulation is applied. Triangular elements are used and stiffness equations of elements are obtained from virtual work principle. These nonlinear equations are linearized by Newton-Raphson's method and are solved by Gaussian e...
full textMy Resources
Journal title
volume 6 issue 2
pages 131- 138
publication date 2019-11-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023